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In  this paper we develop a uniformly valid, second-order theory for calculating 
the unsteady incompressible flow that occurs when an airfoil is subjected to a 
convected sinusoidal gust. Explicit formulae for the airfoil response functions 
(i.e. fluctuating lift) are given. The theory accounts for the effect of the distortion 
of the gust by the steady-state potential flow around the airfoil, and this effect 
is found to  have an important influence on the response functions. A number of 
results relevant to the general theory of the scattering of vorticity waves by solid 
objects are also presented. 

1. Introduction 
The theory of unsteady flows around stationary airfoils has numerow im- 

portant technological applications. It is, for example, a fundamental ingredient 
in any calculation of the unsteady blade forces that are the source of such a wide 
variety of undesirable effects in turbomachinery. 

This theory has been developed primarily in the linearized approximation, 
wherein the unsteady flow is decoupled from the steady-state aerodynamics 
(Kussner 1940; Sears 1941; and others). In  fact, at this level of approximation, 
the unsteady lift on an airfoil is the same as that on a flat plate with zero thickness 
and angle of attack. Recently, Horlock (1968) has (by means of a heuristic 
approach) partially accounted for some of the coupling between the angle of 
attack of the airfoil and the unsteady flow. Similar ideas have been used by 
Naumann & Yeh (1972) to account for camber. These theories suffer from the 
drawback of including some of the coupling effects while not including others. 

' I n  order to formulate correctly the problem of a non-uniform flow around a 
stationary airfoil, it is necessary to  consider two small parameters. One of these, 
termed E ,  is the amplitude of the unsteady incident disturbance; the other, 
termed a, is a measure of the angle of attack, camber or thickness of the airfoil 
(i.e. the steady-flow disturbance caused by the airfoil). The linear theory accounts 
for the O(s) effects, while the coupling terms are O(as). We can ensure that all such 
terms are accounted for only by developing a systematic expansion. Such an 
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approach is taken in this paper. Although this is the first time that this has been 
done for the gust problem, several authors, beginning with Van Dyke (1954), have 
developed second-order expansions for the problem of an oscillating airfoil in an 
irrotational flow. 

In  order to concentrate on the coupling effect, we suppose that E = o(a). 
Physically, this amounts to requiring that the amplitude of the gust be much 
smaller than the steady-state disturbance. 

One of the new effects that is included in this approach is the distortion of the 
oncoming gust by the steady-state potential flow field about the airfoil. This 
distortion acts to cause significant variations in the wavelength of the incident 
vorticity wave while also causing variations in both the amplitude and phase 
of its associated velocity field. The details of this nonlinear dispersion process 
will be discussed subsequently, and a number of results relevant to the general 
theory of vorticity-wave scattering will be given. Moreover, it will be shown that 
this phenomenon has such an important effect on the fluctuating lift that it  
introduces a term that exactly cancels those occurring in Horlock’s theory. As 
a result, our formula for the fluctuating lift is quite different from the one 
obtained by Horlock. In  fact, the distortion effect causes the fluctuating lift to 
depend on the wavenumber of the gust in the direction perpendicular to the plane 
of the airfoil. No previous theory exhibits such a dependence. 

In  $ 2  we formulate the general problem of a two-dimeni$onal airfoil in an 
incompressible flow subject to a small amplitude gust and integrate the vorticity 
equation that governs this process. In  $ 3 the results are restricted to the case 
where the steady-flow disturbance caused by the airfoil is small, and a formal 
asymptotic expansion of the unsteady solution is constructed. However, this 
expansion turns out to be non-uniformly valid at  large distances from the airfoil, 
and it is necessary to construct an appropriate ‘ outer expansion’ for this region. 
The matching of these two expansions provides a boundary condition (at infinity) 
on the homogeneous solution to the ‘inner’ problem. (The corresponding parti- 
cular solution is given in $3 .1 . )  The boundary conditions on the surface of the 
body are deduced in appendix C, and in $ 3.1 we present the homogeneous 
solution that satisfies these conditions as well as the one at  infinity. We then show 
that this solution is non-uniformly valid at  the leading and trailing edges and use 
the method of strained co-ordinates (Lighthill 1951) to make it uniformly valid 
at these points. The physical implications of the solution are discussed in $3.2, 
while in $ 4 we derive a formula for the fluctuating lift on an airfoil of arbitrary 
shape and thickness distribution. 

In  contrast with the case of linearized steady flow (or for that matter the case 
of a second-order unsteady flow around an oscillating airfoil), the effects of 
thickness, camber and angle of attack cannot simply be superposed, primarily 
because the distortion of the gust imparts a nonlinear character to the problem. 
However, it is shown in $4.2 that the results for zero-thickness airfoils are much 
simpler than those for airfoils with thickness, and an explicit formula (in terms of 
Bessel functions) is obtained for the flat-plate airfoil a t  an angle of attack to the 
mean flow. Finally, the physical implications of the flat-plate solutions are 
discussed in $ 4.3. 
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FIGURE I .  Gust approaching airfoil. 

2. Formulation 
Consider a two-dimensional airfoil with chord length c placed in a uniform 

stream having mean velocity U at large distances from the airfoil (figure 1). As 
in the Sears problem, we suppose that a frozen convected sinusoidal gust whose 
amplitude EU is much less than the free-stream velocity U is imposed on the flow 
far upstream from the airfoil. We further suppose that the flow is two-dimensional, 
incompressible and inviscid and that body forces can be neglected. Then Euler's 

(2.1) 
equations become v.v = 0 

and (a/at+v.v)v = -VP, (2.2) 

where all lengths have been non-dimensionalized by +c, the time t by c/2U, the 
velocity V by U ,  and the pressure P by pU2. 

Since the steady flow is assumed to be inviscid and irrotational, the solution 
must be of the form v = v(x) + €U(X, t )  + . . ., (2.3) 

P = ps(x) +"'(X, t )  + ..., 
where the steady velocity v(x) satisfies the conditions 

v . v = v x v = o ,  (2.5) 

and u andp' are of order unity. Taking the curl of (2.2), using (2.1) to introduce a 
stream function @ for the unsteady velocity, and neglecting terms of order €2 

( 0  1, end of third paragraph) yields 

(a/at+v.v) Q = 0, (2.6) 

(2.7) 

(2.8) 

where Q, which denotes the negative of the vorticity, is given by 

Q a v2$ = aulpx2 - au2/axl; 

u = (u1, U2> = {a$/ax,, - w/ax,>; 

$, which determines the unsteady velocity field, is given by 

and x = {xl, x2> are Cartesian co-ordinates with x1 aligned in the direction of the 
upstream mean velocity U .  
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Equation (2.6) can readily be solved for 52 by introducing the steady-flow 
potential and stream function CD and Y ,  respectively, to obtain the equation 

(ap t+  lvp/aCD) 52 = 0, 
whose general solution is 

(2.9) 

(2.10) 

where f is an arbitrary function of its arguments. Far upstream (where the 
‘scattered’ field produced by the airfoil decays), this solution must approach the 
vorticity distribution of the imposed gust, which was required to be periodic in 
time. But this can occur only if the function f is chown such that 

R = g(Y) exp (ik, [ (& - I) dCD + CD - CD, - t , I) (2.11) 

where k, is the non-dimensional frequency, a,, = lim [CD(xl, x,) - xI] = constant 

(with x, finite) and g is essentially an arbitrary function of Y. Since the problem 
is linear, we can obtain a solution that corresponds to any choice of the function g 
by superposing solutions associated with the individual harmonic components : 

xi+- m 

g ( Y )  = - i I kl exp [ik,(Y - E,)], (2.12) 

where k, is the wavenumber of this component and E, is a constant. The nor- 
malization - i I k J  , where 

k = k, + ik,, (2.13) 

is chosen simply as a matter of convenience. Then without loss of generality we 
can take 

52=-i(klexp ( i ( k, [ /~m(&-l)dCD+@-@o-t  

This equation determines the vorticity field everywhere around the airfoil, 
including the region far upstream. 

In  the purely linear problem (Sears 1941) the vorticity is given by 

s2 = -ilk1 exp{i[k,(x,-t)+k,x,]). (2.15) 

Far upstream from the airfoil, where CD - CD, - x,, 1.1 N 1 and Y - E, - x2 must 
behave like In 1x1 for any liftingairfoil (Milne-Thomson 1962, p. 194), the vorticity 
wave (2.14) will not reduce precisely to (2.15) no matter how weak the lift of the 
airfoil may be (i.e. no matter how small the coefficient of In 1x1). 

Since the local wavelength of the vorticity wave (2.14) is precisely 2nIvl/kl, 
it  is clear that this quantity is strongly affected by the steady velocity field and 
will not remain constant, as it does for the completely linearized wave (2.15). In  
fact, the wavelength will be longer on streamlines that pass over the top of the 
airfoil and shorter on those that pass below. Equation (2.14) also shows that the 
amplitude of the vorticity wave is conserved. 

The remaining boundary conditions are that 

u.fi=O f o r x o n B  (2.16) 
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(where ii is the unit normal to the surface S of the airfoil) and that the pressure 
and normal velocity be continuous across any inviscid vortex wake that forms 
downstream of the airfoil. Finally we require that the airfoil have a sharp trailing 
edge at which the Kutta condition is always satisfied. Then the problem amounts 
to solving the Poisson equation determined by (2.7) and (2.14) subject to these 
boundary conditions. 

3. Linearized problem 
In order to obtain a relatively simple closed-form solution, the analysis is 

restricted to the case of a thin airfoil with a small angle of attack and camber. 
Thus, let a denote a small parameter that is characteristic of the steady-flow 
disturbance caused by the airfoil. Then the associated velocity field must be of 
the form 

where 8 is a unit vector in the x, direction and v(l) is of order unity. 

v(x) = i + av(')(x), (3.1) 

3.1. Solution 

Inner expansion. Instead of working with (2.14) directly, it is more convenient 
to return to the unintegrated equations (2.6)-(2.8). The structure of these 
equations suggests that we seek solutions of the form 

u = exp ( - ik,t) [u@)(x) + au(l)(x) + ...I, (3.2) 
p' = exp ( - ik,t) [p(O)(x) + ap(l)(x) + ...I, (3.3) 
$ = exp ( - ik,t) [@*)(x) + a$(l)(x) + . . .I. (3.4) 

that ( - ik, + a/axl) V2fo) = 0 (3.5) 
( - ik, + a/axl) v z p )  = - ~(1). v[vzlc,(~q, (3.6) 

Then substituting (3.4) into (2.6) and (2.7) and equating like powers of a shows 

and 

where, of course, both do) and F0), and u(l) and P1) arerelated by equations of 
the type (2.8). 

Equation (3.5) (which corresponds to the usual unsteady, linearized, thin-airfoil 
theory of Sears) can be integrated a t  once to obtain V2$(0) = - i 1 k] exp (ik. x), 
where k denotes the vector {k,, k,} and the normalization has been chosen to be 
compatible with (2.15). Substituting this into (3.6) yields 

(3.7) 
In the remainder of this paper we assume (in order to simplify the equations) 

that k, and k, are both positive. No generality is lost by assuming that one of 
these, say k,, is always positive; but it is then necessary to consider the case where 
k, is negative. The results for this case will simply be stated at  the end. Their 
derivation, of course, is nearly identical to the one given below. 

In order to solve (3.7) it  is convenient to introduce the analytic function 
Q1)(z) = wy)-iwil) of the complex variable z together with (2.13) to obtain (since 
k.+l) = Re (kc(,))) 

(- ik, + a/axl) V Z p )  = - Ik/ k. v(l)eik-=. 
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where overbars denote complex conjugates and a/az denotes the partial derivative 
taken with respect to z while Z is held fixed. Since the right side of this equation is 
the sum of two terms each of which is the product of a function of z and a function 
of 5, it  can be integrated first with respect to z, then with respect to Z, and finally 
with respect to x1 to obtain 

wheref(x,) is an arbitrary function of x,; P and d are arbitrary analytic functions 
of z and Z, respectively; W(l) = W+ iY(1)is the complex potential associated with 

dW(l)/dz = c(1); (3.10) 
c(1) in the usual way by 

and $*(k, x) = e*Wi Y * ( z ) ,  (3.11) 

where (3.12) 

are, of course, analytic functions of z. But it follows from the fact that c(l)(z) 
behaves like i r / z  for large z, where I' is a constant, that these functions are 
actually multivalued. We therefore choose the branch cut of .X+ to lie along the 
positive real axis and that of X- to lie along the negative real axis. 

It is now easy to show by differentiating (3.9) that the O(ae) velocity {uil), ~ ( 2 ) )  
can be expressed as the sum 

{,W 1 , u2 (1) } = {u? +u:, u; +u,h) (3.13) 

of a homogeneous solution and a particular solution. The homogeneous solution is 

(3.14) 

where the arbitrary function f of xz and the arbitrary analytic functions F and G 
of z and 2, respectively, will subsequently be determined such that u") satisfies 
the linearized boundary conditions deduced in appendix C. The particular 
solution is 

u? (xl, x,) 3 - I kl -l{J+ - J- - ilc, eik.IRe {k[ W(l)(z) - W,]}), 
ug(xl, xg) 3 1 k( -1 ( J+ + 5- - k, e i k V x  Re {k[ W(Q(z) - W,]}), 

1 u: = f'(xz) exp (iklxl) + F(z)  + G(Z), 

ut 3 - i k l f ( x , )  exp (ilclxl) +i[F(z)  - G(Z)], 

} (3.15) 

where &( k, x) = $k2 e*Wf[.X*(z) - D* X*(z)]  (3.16) 

and W, is a complex constant that we shall determine subsequently. D* are 
constants, and are set equal to 

D* = s' A$(x1) exp ( & @x1) dxl// AQ1)(x1) exp ( T +i7cx,) dx,, (3.17) 

where for any functionf(x,, x2) the notation Af(xl) is used to denote the jump in 
f across the real axis at the point xl. This choice of D* is made to ensure that 
(see figure 2) 

At&xl) = AuF(x,), Auf)(xl) = Aua(xl) for x1 c - 1 (3.18) 

1- 

-1 -1 
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FIGURE 2.  Airfoil and wake geometry. 

(as can be seen by using the fact that AQ1)(xl) = AW(l)(x,) = 0 for the region 
x1 < - 1 ahead of the airfoil and inserting (3.12), (3.16) and (3.17) in (3.13) and 
(3.14)), and that 

for x1 2 1 1 (3.19) 

Auf)(x,) = ik, lkl-lexp (iklxl) Re(kAW(l)( 1)}+ hu’4.(xl) 

Aui1)(x,) = - ik, 1kI-l exp (ik,~,) Re (kAW(l)( 1)) +Auk(x,) 

(as can be seen by using the preceding equations and the fact that A<(l)(xl) = 0 
and AW@)(x,) is constant in the region x1 > 1 behind the airfoil). 

Outer expansion: boundary conditions at inJinity. The solution u(0) to the com- 
pletely linearized problem .certainly remains bounded as z + 03 (appendix B). 
But we now show that the O(as) solution dl) [given by (3.13)-(3.16)] becomes 
infinite there. Hence (3.2)isnon-uniformly valid a t  infinity, and it is necessary to 
construct an ‘outer ’ expansion for this region. Before doing this we must prove 
that u(l) becomes infinite asx -+ 00. To this end, recall that, as long as the airfoil has 
lift, W(l)(z) N ir In z as z -+ 03. Therefore u(l) contains a-term that becomes infinite 
like Ikl-lexp (ik.x) Re {ikrln (z) }  as z -+ 03. Inserting the results of appendix A 
into (3.16) shows that J5 are O(2-l) as z -+ 03, and it is not difficult to see that it is 
impossible to choose the functions f, F and G in (3.14) to cancel the infinite term 
in u(‘) for all values of z. Hence u(l) must certainly become infinite as x + 03. 

In order to construct the outer expansion, notice that it follows from the 
theory of steady-state, two-dimensional, potential flows (Milne-Thomson 1962, 
p. 194) that as x -+ 00 

O + i Y -  (@,+iE0) = x + a [ i ~ l n z f ( a + i b ) z - i + i ( e - e , ) + 0 ( z - 2 ) ] ,  (3.20) 
where a, b and e are real constants and we have put E, = ae,, in order to obtain 
agreement with (2.15). Then, since Id(O+iY)/dz12 = IvI2, this result can be 
inserted into (3.14) to obtain (once the integrations have been carried out and 
(2.7) inserted into the result) 

au, au, 
---= - i l k ]  exp(i[k. x - a R e  {k( W(l)(x) - W,)} - kit]} + 0 (as, axz ax, 

as z+m,a+O, O<argz<2.n. (3.21) 
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where we have definedt the complex constant W, to be 

W, = lim W)(x1, x2) + ie, as x1 -+ co with x2 finite. (3.22) 

Equations (2.8) and (3.21) determine the velocity field at  large distances from 
the body. It is easy to verify that they are satisfied to within an error O(a2, a/]zI2) 
bv 

1 
u;ut = - -exp {irk. x - a Re {k( W(l)(z) - Wi)} - k, t ]}  (k2 + al? Re g) 1 

lkl k2 

+ [ S ( z )  + 9@)] exp ( - ik,t), 
1 k2) l(3.23) 

lkl kZ 
ugUt = - exp{i[k. x - a Re {k( W(l)(z) - W,)} - k, t ] )  (k, - al? Im : 

+ i [ S ( z )  - %@)I exp ( - ik,t),j 

where 9 and 9 are arbitrary analytic functions of their arguments. Substituting 
this result into the momentum equation (2) (with only terms through O(ae) 
retained) shows that the unsteady pressure can remain uniformly bounded as 
z -+ 00 only if there is a constant M such that 

9 = M/z + o(z-l) and 9 = - M/2 + o(X-l). 

The pressure fluctuation will then behave like Mexp ( - ik,t) tan-, (y/x). But 
since this function is discontinuous along some curve in the x, y plane, we can 
satisfy the requirement that the pressure be continuous only by putting M = 0, 
which implies that F = o(2-l) and 9 = o(Z-l) as IzI + CO. 

By using the results of appendix A to expand the inner solution (3.2) (for 
large z )  with u(O)given by (B 1)  and u(l)given by (3.13)-(3.16), it  cannow be shown 
that the inner and outer expansions of the velocity can be matched in some 
intermediate domain only if u?, uk -+ 0 as IzI -+ 00. However, it  follows from the 
momentum equation (2.2) that the inner and outer expansions for the pressure 
fluctuation will match only if the more severe requirement 

as z - t o o  (3.24) 
is imposed. 

Homogeneous solution to the inner problem. It is now necessary to construct a 
homogeneous solution u h  that satisfies the boundary condition (3.24) a t  infinity 
and causes u(l) [see (3.13)] to satisfy the boundary conditions (on the wake and 
the airfoil surface) deduced in appendix C. We begin by constructing a formal 
solution to this problem, which will subsequently be made uniformly valid. In  
order to do this, it  is first necessary to consider the singularities at the leading 
and trailing edges. Thus, upon inserting (B 10) into the boundary condition (C 5 )  

t We have (in anticipation of the matching process) used the same symbol here a0 we 
did for the arbitrary constant in the inner solution (3.15). Thus (3.22) now effectively 
defines that constant. 
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we find that the term -/?d[xlARu$')(xl)]/dxl causes u(zl)(xl) to behave like 
(zl + I)-) at the leading edge (xl = - 1) and like (x, - l)-i a t  the trailing edge. 
(It is assumed, of course, that the camber yc(xl) and thickness b(zl) go to zero fast 
enough at  the leading and trailing edges to ensure that no other singularities 
occur in the boundary conditions (C5)  and (C6).) These singularities can be 

where the branch cut is taken along the real axis from - 1 to + 1, S(k,)  is the 
(complex conjugatej-) Sears function [see (B8)] and a8 is the airfoil angle of 
attack. Since 

AuF(xl) = Aut(xl), AuF(xl) = Au;(x,) for lxll > 1, (3.26) 

where (u2(z1)) denotes the average i[u2(x1, 

UH = UhfO(lzl-2) 

(3.27) 

+ 0) + u2(x1, - O ) ] ,  and since 

as z - f c o ,  (3.28) 

it is easy to see that, apart from eliminating the singular term in (C 5), uH satisfies 
the same boundary conditions as u h  (including the condition (3.24) at infinity). 
More important, however, uH and UF are themselves functions of the form (3.14) 
wherein, in order to satisfy condition (3.24), we must putf(xz) equal to zero. Then, 
since Aui1)(zl) = Auf)(xl) = 0 for x1 < - 1, it follows from (3.18), (3.24), (3.26) 
and (3.28) and the theory of piecewise analytic functions (Gakhov 1966, p. 25) 
that 

( 3 . 2 9 4  

(3.293) 

for all z outside the cut - 1 < x1 < co. By adding (or subtracting) the complex 
conjugate of the second equation to the first, it  is possible to calculate uH(or uF) 
everywhere outside the strip - 1 < x1 < 00 once AuF and A@ are known. The 
required expressions for these quantities are given in appendix D [see (D 1)-(D S)]. 
They relate AuH and AuF to the sbeady-flow solution, the geometry of the airfoil 
and an arbitrary constant K,.  

K ,  is determined by the requirement that the solution should satisfy the 
boundary condition (3.24) at infinity. Thus, by inserting (D 1) and (D 2) into 

t Notice that we are using the time dependence exp ( - i k ,  t )  rather than the dependence 
exp (ik,t)  used by Sears. 
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Contour C, 

FIGURE 3. Contour for calculating FIGURE 4. Deformed contour for 
circulation. calculating circulation. 

(3.29) and integrating by parts, it can be shown that there exist constants d and 6 
such that 

as for 6 < argz < 2n-6  (3.30) 

for any 6 > 0. Hence the solutions (3.29) are indeed compatible with the boundary 
condition (3.24). But it is easy to show that they will not satisfy this condition 
unless 

j - G o u w  = --(kD--kD+), (3.31) 

where C,, is the large circle shown in figure 3, which can be dekrmed into the 
contour shown in figure 4, so that 

i m r  - 
lkl 

(3.32) 

This result is used in appendix D to show that K ,  is determined by (D 9). 
The solution now satisfies all the equations and boundary conditions governing 

the problem. Nevertheless, it  is non-uniformly valid at  the leading and trailing 
edges because the second term on the right side of (3.25) causes the O(olc) term to 
be more singular at  these points than the O ( E )  (i.e. Sears) solution. This difficulty 
can be overcome by using the method of matched asymptotic expansions. The 
‘inner solution’ for a flat-plate airfoil is constructed in appendix E. However, this 
result shows that the zeroth-order outer solution already possesses appropriate 
singular behaviour st the leading edge and therefore that the non-uniformity 
arises only because the singularity is not located at the right place. Thus, even 
though the problem is elliptic, the method of strained co-ordinates (Van Dyke 
1964, p. 100) can be used instead of the more complicated method of matched 
asymptotic expansions. In  fact, we use a modification of the usual procedure 
suggested by Pritulo (1962; see Van Dyke 1964, pp. 72 and 73). Thus, substituting 
(3.15), (3.17) and (B 14) into expansion (3.2), introducing the ‘slightly strained’ 
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co-ordinate 7 = t1 + itz = z/(  1 - iap) into the result, and re-expanding for small 
aj9q yieldst 

%a = exp ( - iklt) (4?(51,52)  + auZ(t1, 5 2 )  +O1.uF(t1, 5 2 )  + O1.pq w?(tl, 52) 

where D, =- 52 aP51 - $1 a / a t z ,  (3.34) 

and the O(a) terms are now no more singular than do)(&, t2) at 7 = 1 (or any 
other point). The quantities u1 and up still denote components of u along the x1 
and x2 co-ordinate axes. They are related to the components ui and u; along the 
ll and t2 axes (figure 2 )  by 

q 5 1 9  52) = Ul(519 62) - apexp ( - iklt) 
4 t 1 ,  5 2 )  = u2(51? 52) + apexp ( - ik,t) + m 1 3  E 2 )  + o(01.2). 

3.2. Discussion of solution 

The solution to the problem is now complete. The velocity field in the outer 
region can be calculated from (3.24), while the velocity in the inner region is 
determined by (3.33) with u(O) and given in appendix B, u p  given by (3.15) 
and uH given by (3.29) and (D1)-(DlO). Of course, we cannot evaluate the 
integrals in these formulae until the geometry of the airfoil and the steady-state 
potential flow solution are specified. This will eventually be done for a flat-plate 
airfoil at  an angle of attack to the mean flow. 

Equations (3.15) and (3.16) show that the O(as) particular solution is propor- 
tional to k as k -+ oc), while the results of appendix B show that the O(E) particular 
solution is proportional to ko. Hence the expansion in 01. is actually an expansion 
in powers of ak and as such is certainly not uniformly valid in frequency space. 
However, this behaviour does indicate that the steady flow will have its greatest 
influence on the fluctuating lift at higher reduced frequencies. (Of course com- 
pressibility effects will invalidate the entire solution when k becomes too large.) 

As long as the thickness b(xl) and mean camber line yc(xl) (figure 2) vanish at  a 
reasonable rate when x1 approaches 1, the present result will be uniformly 
valid in all regions of the xl, x2 plane. But in order to achieve this uniformity, we 
have had to strain the solutions at  the leading and trailing edges. An important 
consequence of this straining is a change in the apparent orientation of the airfoil. 
A similar effect occurs in steady-airfoil theory. But in that case a uniformly valid 
expansion can be obtained simply by solving the problem in the proper (airfoil 
aligned) co-ordinate system. In the present case this procedure would lead to a 
divergent integral for the part of the velocity induced by the wake. 

We have already indicated that the steady-state velocity field influences the 
wavelength of the incident vorticity wave while leaving its amplitude unchanged. 
But the particular solution shows that the amplitude and direction as well as the 
wavelength of the associated velocity field are altered by the steady flow. Indeed, 

t Of course, we understand that ui0)(t1, t2) and @(x,, z2) are identical functions of their 
respective arguments; i.e. if uy'(xl, zz) = ml+z& then ut)(t1, ta) = aE1+g. 
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(3.23) shows that at  large distances from the airfoil the change in amplitude of the 
unsteady vortical velocity field is proportional to the steady circulation about the 
airfoil. This result is a reflexion of the fact that the steady lift produces the slowest 
decaying part of the potential flow about the airfoil (although the numerical 
calculations show that most of the distortion occurs in the vicinity of the airfoil). 

It follows from (2.3) and (3.23) that the far-field gust velocity is 

exp {i[k. x - aRe{k( W(1)- W,)} - k,t]} ,  - ~ U k 2  

h- eUk, - exp {i[k . x - a Re {k( W(l)-  W,)} - k,t]})  , (3.36) 
lkl 

which in the case of a lifting airfoil differs from the gust 

-EUk2 eUk, {--pq- expi{@. x - k,t)}, - exp {i(k. x - k, t )}  
Ikl 

(3.37) 

that is imposed in the strictly linear (Sears) problem. In  the present case the 
perturbation potential W(l)(z) behaves like In I X I  as x -+ 00, and hence its contribu- 
tion to the exponent in (3.36) cannot be neglected no matter how small a may be. 
Far from the airfoil, where the ‘scattered’ part of the unsteady velocity goes to 
zero and only the gust remains, the latter quantity must itself satisfy equations of 
continuity and momentum that are linearized about the steady potential flow. 
However, this flow disturbs the region at infinity enough that the solutions of 
these equations are of the type (3.36) rather than of the type (3.37). The gust 
(3.36) differs from the gust (3.37) in that the former is frozen relative to an 
observer moving along the steady-state potential flow streamlines with a speed U ,  
while the latter is frozen with respect to an observer moving along the real axis 
with this speed. 

The components of the amplitude A = { -k2eU/ lk l ,  k,eU/lkl)  of these gusts 
are not independent because the associated velocity field satisfies the continuity 
equation only when the transverse wave condition A .  k = 0 holds. 

4. Fluctuating lift 
4.1. General formulae 

In  most applications it is necessary to know the net fluctuating lift caused by the 
gust. In  order to determine this quantity, we first calculate the fluctuating 
pressure force p$wf on the upper/lower surface. If we introduce the expansion 

(4.1) p’ = exp ( - ik, t)  b(O)(!) + ajP(5) + . . .] 
of the pressure fluctuation in the 
written as I(2.4) and figure 21 

= {&, c2} co-ordinate system, ~ , f , ~  can be 
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After (2.3), (2.4), (3.1), (3.33), (3.35) and (4.1) havebeeninsertedinto themomen- 
turn equation (2.2) and (C 3), (B l), (B 2) and (B 14) have been used to simplify the 
results, equating the E2 component of the O(E)  terms yields 

( a p ~ ) / a 5 ~ ) ~ ~ ~ ~ ~  = 0 for /El/  < 1, (4.3) 

while equating the El component of the O(ae) terms yields 

d k 
&pc')(El) -$XP (ikl El)  A@)(tl) + <4Ytl)) A%l0)(E1)] - Z e x P  (ilt1) A4lVEl) 

Ikl 
= ikl-- [ A u f ( t , ) + A u ~ ( ~ , ) ]  for ]Ell < 1 .  (4.4) 

Hence L', the net fluctuating lift per unit span acting on the airfoil, can be 
written in the form 

(4.5) 

( 8 3  

L'/ijpcU2s = (LJ+pcU%) + a(Li/ &pcU2as), 

where (2LJcpU2e) exp (iklt) = - 

is the usual linearized response function (i.e. the Sears function), and the O(ea) 
contribution to the lift is given by 

1 -- Li 
ijpc U2as -1 

- - exp ( - ik, t )  I A@@) ( tl) atl. 

In order to evaluate this integral, we first note that the steady-state circulation 
around the airfoil is just equal to 

rr- Av',l)(x,) dx,, (4.7) 

that the condition that v.ii be zero on the surface of the airfoil implies that 
Auk1) = db/dxl, and that the imposition of the Kutta condition at  the trailing edge 
(for both steady and unsteady flows) implies that Av\l)( 1) = Ap(l)( 1) = 0. Then, 
using (4.4) to eliminate Apt1) in (4.6), integrating by parts and inserting (3.15), 
(3.16) and (3.12), and integrating by parts again and using (3.13), (3.19), (D l ) ,  
(B 4) and the first part of (D 10) to simplify the results yields 

(~~~)(z,)) AHui0)(xl) dz, 

lkl -1 lkl 

- ik -% 1' exp (iklx,) (1 + xl) b(xl) dx, +L (kD, + k D - ) / I 1  b(xl) dz,), 

. ,  
(4.9) where y* = - J1 [(xl - 1) kk, k iz] Avil)(xl) dx,. 

2 ( k /  -1 

The fluctuating lift can now be calculated by substituting (D 8) into (4.8) and 
carrying out the integration. This cannot be done explicitly without first intro- 
ducing a specific formula for the steady flow, but it is possible to reduce the 

48 F L M  74 
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multiple integrals to a single quadrature by interchanging the order of integration 
and integrating by parts. While the resulting formulae are quite complicated in 
the general case, they simplify enormously when the airfoil thickness is put equal 
to zero. Unfortunately, because of the coupling that results from the distortion 
of the incident gust by the steady-state potential flow, it is not possible, as it is in 
the case of linearized steady flow, to superpose the effects of thickness, camber 
and angle of attack. However, airfoil thickness probably has only an unimportant 
influence on the unsteady lift and will not be considered further. 

4.2. Airfoil with zero thickness 
In  order to obtain a specific formula for the fluctuating lift on a zero-thickness 
airfoil, we first substitute (D 8) into (4.8) and use (F 1) and (F 2) to simplify the 
results. We then interchange the order of integration, evaluate the inner integrals 
[with the aid of (F S)], and use (D 10) [in which one of the integrations can be 
performed by virtue of (F2)]  to eliminate K,. Finally, after some additional 
rearrangement [with the aid of (F 3) and (F 4)], we find that 

where C(kl) = Hf)(kl)/[Hil)(kl) - iHbl)(kl)] (4.11) 

is the (complex conjugate) Theodorsen function (Theodorsen 1935), 

and a, = (W(l)(X,)) - w,. (4.14) 

a, is determined both by the value (W(l)(x,)) of (WC1)(xl)) at the essentially 
arbitrary point x1 = x,, where the surface of the airfoil crosses the x1 axis, and by 
the difference between the arbitrary constant used to set the level of the imaginary 
part of W(l) and the arbitrary constant e,. 

In  most cases it is probably necessary to evaluate the integrals in (4.10)-(4.13) 
numerically. Fortunately, there are a large number of interesting shapes for 
which they can be expressed in terms of known functions. In  fact, for a flat-plate 
airfoil at  an angle of attack to the flow, they can be expressed in terms of the 
combinations 

& ( x )  3 J,(z) iJl(z), H*(z) E H$')(X) T i H f ' ( ~ )  (4.15) 

of Bessel and Hankel functions. Since this configuration is completely charac- 
terized by its angle of attack, we can suppose that the expansion parameter a is 
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equal to this quantity and put /3 = 1 (figure 2). Then the complex-conjugate 
steady-flow velocity perturbation 5‘1) is given by (Jones & Cohen 1957) 

(4.16) 

where the branch cut of the square root is taken from - 1 to + I along the real 
axis. Inserting this into (4.10) by way of (4.12) and (4.13), carrying out the 
integrations, and rearranging with the aid of (B 9) yields 

L; = iReka,++)S(k,) 4k k 
cpU(sU) n Ikl I4 

+@+(:) +iC(k,)  [n, (i) -.-81), (4.17) 

where we have put 
- 

A,(z) = inz2Re{H*(z)J*(z)>, 
(4.18) . zJ,(z) 7TRe {JM H*(z)} T J*(4 

O*(z) = z - --I 
This solution is valid only for positive values of k,. By modifying the analysis 

given above, it is possible to show that the relation Li(kl, - k,) = -L;(k,, k,) can 
be used to extend it to negative values. Howeyer, it  is much easier to establish 
this result from symmetry arguments. 

4.3. Discussion of $at-plate results 

Equation (4.8) can be used to determine the unsteady force acting on an airfoil 
of any shape, but the calculation will usually involve quadratures. We have 
succeeded, however, in expressing the fluctuating lift for a flat-plate airfoil 
entirely in terms of Bessel functions. The result is given by (4.17). 

It follows from (4.14) that the first term in this equation, 

- ik, lk[ -lexp ( - iklt) Re {k[( W(l)(x,)) - &I>, (4.19) 

is simply a correction to the linear (Sears) solution, 

(4.20) 

for the constant phase factor introduced into the gust (3.36) by the arbitrary 
choice of level of the steady-state complex potential function W(l) relative to the 
constant e, = Im W, and by the choice of the precise (i.e. correct to O(a)) vertical 
loeation of the airfoil. In fact, it  is not hard to show [by integrating (4.17)] that 
(W1)(x0)) - W, = i (xo + e - e,), where e is the constant that was introduced in 
expansion (3.20) of the steady-state potential and x,, is the value of x, where the 
airfoil crosses the real axis. Hence this term vanishes when e, is put equal to 
e + x,, and in what follows we shall always assume this has been done. Then (3.20) 
and (3.22) imply that 

W(l)-W, = i h ~ x ~ - i x , + O ( ~ x ~ - ~ )  asx,-+cowithx,finite. (4.21) 
48-2 
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Since axo is the height xc of the centre of the airfoil above the real axis, the 
exponents in (3.36) become 

i [k , (x , - t )  +k,(x2-xc)  +ak,ln 1x1 + O( Ixl-l)] as x1 -+ -a with x2 finite. 
(4.22) 

Thus neglecting the first term in (4.17) amounts to nothing more than referencing 
the phase of the gust to the vertical position of the centre of the airfoil. 

Since elimination of the secular behaviour at the leading and trailing edges has 
caused the O(s) pressure distribution to be rotated into the plane of the airfoil, 
there will be an unsteady drag force of order as. This result should be compared 
with those of Glauert (1929) and Jones (1957) for the unsteady motion of a thin 
airfoil, in which the drag is O(s2). 

An O(as) correction to the Sears formula was obtained by Horlock (1968)’ who 
adopted a more-or-less heuristic approach to the problem. His result can be 
shown to consist of a correction to the Sears function due to the orientation of the 
gust relative to the airfoil plus a term (in the present notation) 

-ak, (El-lexp ( -  ik, t)  [J,(k,) -iJl(kl)], (4.23) 

which arises from the inertia contribution wil)(xl, f 0) u\O)(x,, f 0) to the pressure 
force in (4.4). But our analysis shows that this term is exactly cancelled by one 
that enters the formula for the lift through the particular solution UP and can 
therefore be attributed to the distortion of the gust by the steady-state potential 
flow field (an effect not accounted for by Horlock). Thus (4.17) differs considerably 
from the results obtained by Horlock. We should emphasize again that the 
present analysis is a systematic (‘exact ’) theory that accounts for all O(m) terms, 
including those associated with the distortion of the gust by the steady-state 
potential flow field of the airfoil. It shows that this gust distortion effect has a 
strong influence on the behaviour of the response function. 

If k, is allowed to approach zero while k,  is held fixed, so that only the upwash 
component of the gust velocity remains, L; will vanish and the fluctuating lift 
will be completely determined by the Sears function. Horlock’s expression for the 
lift also vanishes when the chordwise gust velocity goes to zero. But unlike his 
result, (4.17) depends on both the axial and the transverse wavenumber k, and k, 
and not just on the axial wavenumber k,. Thus the present analysis not only 
exhibits the effects of gust distortion on the response function, but also shows 
for the first time how this function is influenced by the wavenumber in the 
direction perpendicular to the plane of the airfoil. 

We first consider the low frequency limit, wherein k, and k, both go to zero. 
Since A*(z) -+ 0 and @*(z) -+ T i as z -+ 0 and S(k,)  -+ C(k,) -+ 1 as k, -+ 0, it follows 
that 

Li/cpU(eU) 7~ - - 4ak?k2/lk13 as k,, k, -+ 0. (4.24) 

This a t  first glance appears to be a surprising result since in the quasi-steady 
approximation the fluctuating lift is given by 

L&.s./€pcu7T = u2 + 2au,, (4.25) 
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so that if we simply take u, and u2 to be the disturbance velocities - k,/l kl and 
kl/l kl at infinity, we find that the O(a) contribution should be - 2k2/l kl . However, 
(3.15) and (3.16) show that the average upwash velocity (uf(x,)) induced at  a 
finite point x1 of the real axis by the O(a)  contribution to the particular solution is 

i ik, 
2 - [q+(xl) +q-(xl)] --exp (ik,x,) Re 

lkl Ikl 
(4.26) 

where q* are given by (D 7). Upon evaluating the integrals for the case of a flat- 
plate airfoil, we find that the term i[q+(xl) +q-(x,)]/lkl does not vanish in the 
limit as k, and k ,  approach zero but behaves like 

(4.27) 

The second term of this expression arises from the portion of the particular 
solution that does not match the incoming gust a t  infinity (and is cancelled out 
by the requirement that the homogeneous solution satisfy the boundary condi- 
tion (3.24)). Hence only the first term, which can be written as 

2k-J I k l -  4k:!k2/ I q3, (4.28) 

is actually associated with oncoming gust. Thus the net upwash velocity that this 
gust induces at  the airfoil is not given by k,/l kl but by 

(4.29) 

When this is inserted (together with u1 = -k,/lkl +O(a)) into (4.25), we do 
indeed recover (4.24). This result is a consequence of the non-uniform limit 

lim lim u2 #= lim lim u2. (4.30) 
Ixl-tm l k 1 4  lk1+0 Ixl--tm 

Physically, it  implies that the steady-state potential flow field decays so slowly 
that the gust arriving at  the airfoil surface always suffers a certain limiting 
amount of distortion in its upwash velocity no matter how long its wavelength is. 

Now consider the high frequency limit, wherein k +- 00, with k, > 0. Then, 
since it follows from the asymptotic behaviour of the Bessel functions that 

- we find that 

and as a result that 
Re {J&) H&)) = 0(r2) as z +- 00, (4.32) 

@* - (k/z)Bexp ( T  ik,). (4.33) 

kl k2 L' = 2ia7exp (ik,) +O(k-1) as k +- 00. 
Hence cpU(sU)  7r Ikl 

(4.34) 
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I 

t 

- 1.00 I 
PIUURE 5. Response function for flat-plate airfoil. (a) 0 < k, < 1. -, k , - - 0.2. , _ - -  
k - 0.4; ---, k - 0.6; ----, k2 = 0.8; --, k2 = 1.0. (b )  1 < k, C 5. -, 
k2 = 1.0; - - -, k, = 3.0; ---, ka =z 5.0. 

2 -  2 -  

Thus, if k, -+ 00 with k, held fixed or if k, + co with k, held fixed, the lift fluctua- 
tion will have a k-l decay rate, which is faster than the k c i  decay of the O(s) 
(Sears) lift fluctuation’L& Hence the effects of the steady flow on the lift become 
less important. 

However, L; does not decay at all when k, and k, are allowed to approach 
infinity at the same rate, so that the steady-state potential flow has its greatest 
effect on the fluctuating lift at higher frequencies. Of course, Li will eventually 
become larger than the O ( E )  contribution Lh (no matter how small a is), and the 
expansion will be invalid. 
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9 = Liexp(ik,t)/[mpU(sU)a] (4.35) 
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The dimensionless response function 

[calculated from (4.17)J is plotted in figure 5. The curves simply show that this 
function varies smoothly between the various limits that were discussed above. 

The authors would like to thank Professor W. R. Sears for his encouragement 
during the course of this work. 

Appendix A 
Hereweobtainasymptoticexpansions of X & z )  as z+co. Suppose that z is large. 

Then, owing to the analyticity of its integrand, it is always possible to choose the 
path of integration in (3.2) such that C(l)(z) can be replaced by its asymptotic value 
ir/z. Consequently 

dz as z+m.  (A 11 2 exp ( ail&) 
,X,(z) - irf 

F m  

These quantities differ from exponential integrals only in the location of the 
branch cuts and their asymptotic expansions can be found by using the pro- 
cedures developed for these integrals. Thus, for example, by combining the 
method used in 6 3.2, p. 32 ,of Lebedev (1965) with that used in exercise 6, p. 41, 
of that reference, it is easy to show that 

(A 2) 
,X,+(z) - (2r/iE~)exp ( g i L z )  for o < argz < 277, 

X - ( z )  - ( - 2P/Ez) exp ( - &%z) (arg zI < 7 ~ .  for 

Appendix B 
Here we list and in some cases develop further certain properties of the O(E) 

(linear) solution that are needed for the present analysis. This (Sears 1941) solu- 
tion is the superposition 

~ ( 0 )  = -(fk,-jk,) Ikl-leik.x+HUfO) (B 1) 

of the linear gust (3.37) and a homogeneous soIution xu(o) that decays like r2 
(since it has zero circulation) as z-+co. The components of satisfy the 
Cauchy-Riemann equations 

with the x1 component having the odd symmetry 

HU$O)(X,, + 0) = -"up(.,, - 0) (B 3) 

along the real axis. The jump in this component across the wake is given by 

(B 4) 
2k 

AHu$') = -A Qoexp [ik,(x, - l)] for 1 < x1 < co, 
Ikl 
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and the J 's  and H's denote the usual Bessel and Hankel functions. Its jump across 
the airfoil is related to the corresponding pressure jump by 

and satisfies the zero-circulation condition 

ik, 1; , AHuf')(r,) dr,  = 2k1 Qo/ 1 k 1 .  
Since Ap(O) is related to the complex-conjugate Sears function 

S(k , )  = { + i ~ k , [ H $ ~ ) ( k , )  - iHbl)(kl)]}-l 

(B 6) can be integrated with the aid of (B 7)  to show with the aid of (B 3) that 

H~f)(x l ,  5 0)  = f B[h,(r,) +hb(xl)] for - 1 < x1 < I ,  (B 10) 

where 

has a square-root singularity at x1 = - 1 and 

remains bounded a t  both ends. In  fact, (B 12) takes on the values 

bb( - 1) = 0,  hb(1)  = 2k1 1kl-l Qo (B 13) 

at these two points. Hence i t  follows that u(O) can be written as 

where is bounded and satisfies the Cauchy-Riemann equations (B 2). 

Appendix C 
Here we develop the linearized boundary conditions which hold on the airfoil 

and across the wake. Our method for identifying the airfoil and wake surfaces is 
shown in figure 2. The location of the latter is unknown a t  this stage of the 
development, but to the order of approximation of the analysis it can be charac- 
terized by a function,whose general form is indicated in figure 2. Then, as is well 
known from the theory of unsteady inviscid flows, the boundary condition (2.16) 
is equivalent to 

while the velocities V* just above and below the wake must satisfy 

u,d(af*)/dr, = u2 for x2 = f f, 
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As is usual in thin-airfoil theory, we 'transfer ' the boundary conditions onto 
the real (xl) axis by assuming that the various quantities can be expanded in a 
Taylor series about x2 = 0. Performing this expansion in (C l), inserting (3.2), 
equating to zero the coefficients of like powers of a and using (B 1) and (B 2) (to 
eliminate ~ ( 2 ~ ) )  yields 

u'O' (xl, f 0)  = 0 for - 1 < x1 < 1 (C 3) 

and uil)(xl, f 0) = d[f*(xl) uy)(xl, -t ())]/axl for - 1 < x1 < I. (C 4) 

The f's can be expressed in terms of the mean camber ayc(xl), the angle of attack 
ab and the thickness ab(xl) by the relation f*(xl) = yc(xl) -Pxl 5 $b(xl), which, 
together with (B 1) and (B 3), allows us to replace (C 4) by 

(C 5 )  

d k 
Aubl)(xl) = - ([yc(xl) -/lxl]AHuio)(xl) ->b(x,)exp(ik,x,) 

ax1 Ikl 

Carrying out the Taylor series expansions in each term of (C2), inserting (3.1), 
(3.2), (B 1) and (B 2), subtracting the results and equating to zero the coefficients 
of like powers of a and e yields 

Au$')(xl) = 0 for 1 < x1 < 00 

and 

where we have used the result that g(xl) = - W1)(x1, 0) (along with the convention 
that the zero steady-state flow streamline coincides with the stagnation 
streamline). 

It is also necessary to ensure that the pressure is continuous across the wake. 
To thisendweinsert theexpansions (2.3), (2.4), (3.1) and (3.2)into themomentum 
equation (2.2) and equate to zero the coefficients of like powers of a and E to obtain 

Then, after expanding the pressure on either side of the wake about x2 = 0 and 
inserting (2.4) and (3.2), we find [in view of (C 7)] that the pressure will be con- 
tinuous across the wake only if Ap(O)(x1) = Ap(l)(x,) = 0 for 1 < x1 < co. Using 
these relations together with the expansions (2.3), (2.4), (3.1) and (3.2) in the 
momentum equation (2.2) now yields 

since (B 1 )  and (B 2) now show that A(au~)/ax2),z,o = 0 across the wake. 
IJpon solving this first-order differential equation, using (B 1) and (B 4), 
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integrating the results by parts and using the fact that ?#) = a@(l)(l)lax,, we find 
that? 

2 k Q  d 
Au\~)(x,) = -- I;, -~--{[@(l)(x,, 0) +KO] exp [ik,(x, - I)]) for I < x1 < 00, 

(C 11) 
where KO is an arbitrary constant of integration. 

Appendix D 
Here we use some of the techniques of unsteady thin-airfoil theory to deduce 

expressions for AuF and AuF across the airfoil and its wake. It follows from 
inserting (3.12), (3.13), (3.15), (3.16), (3.19) and (3.25)-(3.27) into the boundary 
conditions (C 5), (C 8) and (C 11) and then using (B 1) and (B 10) that 

d AuF(x1) = -- 2k1 Q -{[W)(xl, 0) + K,]exp [ik,(x,- I)]) for I < x1 < a, 
(D 1) lkl Odx1 

d ik, 
2k1Q -{(yr(l)(xl, O)exp[ik,(x,- l)]}+-exp(ik,xl) Re{kAW(l)(l)) 

for 1 < x1 < 00 ( D 2 )  
Ikl 

A@(x,) = -- 
Ikl Odx1 

and 
i i k  

A@(%,) = - - [r+(xl) + r-(xl)] + L e x p  (ik,xl) Re {k A W(Q(x,)} 
lkl Ikl 

hb(x,) is given by (B 12) and KO has been replaced by the new arbitrary constant 
K,. Hence the homogeneous solutions uH and u? can be calculated once the jump 
AuF(x,) in the range - I < x1 < 1 and the constant Kl are known. In  order to 
determine the former, we use the Plemelj formulae (Gakhov 1966, p. 25) to take 
the limiting values of (3.29) as z approaches the real axis, subtract the complex 
conjugate of the result obtained from (3.293) from that obtained from (3.29a), 
and then use the boundary condition (C 6) [with (3.13) and (3.15)-(3.17) inserted] 
to  eliminate ug(x,) from the ensuing expression. This yields 

d{[@YZ,, 0 )  + K,] exp [ikl(Zl - l)]]/dZl 
z, - x1 

xdZl for - 1  < x1 < 1, ( D 5 )  

t In the steady-flow solution @(I)  is discontinuous across the wake, but we do not bother 
here to distinguish between @ ( l ) ( s l + O ,  0) and @ ( l ) ( q - O ,  0) since they differ only by a 
constant that can always be absorbed into the arbitrary constant KO. 
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where 
k. d I d  

&x,) = - 2 -{[y,(zl)-~xl]exp(ik,x,))+- - [b(x , )AH~~' (~ l ) ]  lkl dx, 4 ax, 
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i - i k ,  
--[!I+(%) +!I-(~,)l+--xP ( ik ,x , )  Re{k[(W(l)(x,))- KI}, (D 6) PI lkl 

with 
k2 
4 F m  

q*(x,) = - exp ( -t &kxl) [ Izl (C(l)(x,)) exp ( & +iExl) dx, 

- D*Iz' (Q')(s,))exp ( T i i k x , )  dx, . (D 7) 

Equation (D5) possesses a whole family of solutions (Gakhov 1966, p. 428). 
However, the Kutta condition requires that the velocity jump AuT(Z,) remain 
finite at fhe trailing edge. The only solution with this property is 

'Fm 1 

Zl, 0)  + K,] exp [ik,(Z, - l ) ] } /dZ  l)azl for - I  < X1 < 1. ( ~ 8 )  Z1 - X1 
In  order to determine the constant K,, we first insert (DI )  into (3.32). In  

performing the indicated integration, we follow the procedure used in linear 
theory and assume that k, has a small positive imaginary part that we can put 
equal to zero after the integrations are carried out. Then 

i n r  

Ikl 
2k1 Qo [@(,)(I, 0) +K,] -- (kD+-  k%). (D 9) Au,H(~,)dx, = -- 

Ikl 
Hence, upon integrating both sides of (D8) and interchanging the order of 
integration, we find that K ,  is determined by 

kl Q, inr  

Ikl Ikl 
A@(x,) dxl = - [ W1)( I, 0) + K,] + - (kD+ - kD_) 

x {[W)(x1, 0)  + K,] exp [ik,(x, - l)]}dx,. (D 10) 

Appendix E 

flat plate. The (non-linearized) steady-flow velocity 
length at  an angle of attack 01, to an oncoming stream is 

Here we investigate the unsteady flow in the vicinity of the leading edge of a 
about a flat plate of unit 

where U, is the free-stream velocity, the circulation is adjusted to satisfy the 
Kutta condition at  the trailing edge, and 7 = & + i& denotes a co-ordinate system 
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FIGURE 6 .  Co-ordinate system for flat-plate airfoil. 

aligned with the plate as shown in figure 6. In  the vicinity of the leading edge 
(i.e. for 7 near - l), this becomes 

Now suppose that the flow in this region is unsteady. We cannot, in general, 
linearize the velocity about the mean flow; but we can neglect its derivatives with 
respect to time in comparison with spatial derivatives. (That is, we can treat the 
flow as quasi-steady in this region.) Thus the velocity will be given by (E 2) with 
a, and U, taken to be the effective instantaneous angle of attack and free-stream 
velocity. As a result, there exist constants a(,) and a(,) (which depend on El and E ,  
and which can be determined by matching with the outer solution) such that 

U, = P+eexp( -iE,t) [a(o)+aa(l)]+o(ae) (E 3) 

and a, = a+eexp(  -iE,t)[~)+olu(,)]+o(ae). (E 4) 

(E 5) 

Hence, when terms that are clearly of higher order in a and E are neglected, (E2) 
becomes 

[I - (L) * (a + e exp ( - ik ,  t )  {u“ + a [ u ~  + a\o)]>). 
7+1 

The first term a2*/(7 + l)* is just the linearized steady-flow solution. The 
constant uLo) can clearly be adjusted such that the second term 

sexp ( - ik, t )  ui0)24/(7 + I)* 

will match with the dominant term of the zeroth-order solution to within an 
error O(w) (since 7 = z+O(a)). The last term is the O(m)  correction for the 
unsteady solution. 

Appendix F 
Here we list certain properties of the linearized approximation to the steady- 

flow velocity field around a zero-thickness airfoil. The axial velocity possesses the 
odd symmetry 

(F 1) w\”(xl, + 0 )  = - wil)(xl, - 0) for - co < x1 < co 
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across the real axis, so that v\l’(xJ must vanish ahead of and behind the airfoil 
(where AvF’(xl) = 0). Hence W)(x,, 0)  must be constant along the wake, so that 

W ( x , ,  0) = W (  1 , O )  for 1 < x1 < m. (F 2) 

On the surface of the airfoil, 

where a”, = ( W(l)(x0)) is the value of ( W(l)(x,)) at  the point where the airfoil 
crosses the real axis. Moreover, the average upwash velocity is related to the 
shape of the airfoil by 

( ~ ~ ~ ) ( x , ) )  = yl(x,) -p  for - 1 < x1 < 1, (F 4) 

while the tangential velocity is related to the average upwash velocity by 
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